Forschung
© Adobe Stock
01.12.2023

Rostocker Forscher perfektionieren 3-D-Druck

Die additive Fertigung wird immer mehr zu einer Alltagstechnologie. Doch wie bei jedem vergleichsweise neuen Verfahren gibt es noch viel Verbesserungsbedarf. Der Rostocker Wissenschaftler und Ingenieur Erik Westphal geht den Verfahrensfehlern auf den Grund. Eingesetzt wird dabei das so genannte Machine Learning, ein Teilbereich der künstlichen Intelligenz (KI).

Kaum eine Branche von Wirtschaft und Industrie kommt heute ohne den dreidimensionalen Druck aus. „Aber es gibt noch deutliche Hemmnisse. Die Qualität der gedruckten Bauteile und die Reproduzierbarkeit des Druckprozesses sind noch nicht da, wo sie sein sollten“, sagt Erik Westphal. Der 32-jährige Maschinenbau-Ingenieur forscht derzeit am Lehrstuhl für Mikrofluidik der Universität Rostock bei Professor Hermann Seitz nach Möglichkeiten, diese Zukunftstechnik auf einen sicheren Stand zu bringen und hat dabei schon beachtliche Erfolge erzielt.

Dazu nutzt er das so genannte Machine Learning (ML), ein Teilbereich der KI. „Perfekt ist die KI in diesem Bereich noch nicht. Noch müssen wir die Computer für unsere Zwecke trainieren.“ Denn KI heißt eigentlich, dass der PC ähnlich intelligent ist wie ein Mensch. „Aber das gibt es noch nicht.“

Beim 3-D-Druck wird ein Werkstück beispielsweise mittels des FDM-Verfahrens (Fused Deposition Modeling; englisch für Schmelzschichtung) schichtweise aus einem schmelzfähigen Material (in der Regel Kunststoff) aufgebaut. Ein pulverförmiger Ausgangsstoff wird schichtweise mit einem Laser zunächst entsprechend der gewünschten Bauteilform angeschmolzen beziehungsweise versintert und dann in Form gebracht. Anschließend wird eine neue Schicht Pulver aufgetragen und der Prozess wiederholt. So entstehen bei diesem „selektiven Laser-Sintern“ aus bis zu Tausenden Schichten neue 3-D-Bauteile.

Bei dem von Westphal entwickelten Qualitätssicherungsverfahren, zu dem er bereits 2019 die erste Idee hatte, wird der Druckvorgang von mehreren Kameras genau beobachtet, per Video und Bild dokumentiert und direkt von einem ML-Algorithmus ausgewertet. „Auf jedem Bild ist die Schicht zu erkennen, die gerade bearbeitet wird. Defekte oder Verunreinigungen werden durch den Algorithmus sofort erkannt.“ Aus riesigen Datenmengen sucht der von Westphal entwickelte Algorithmus nach Mustern, die ein Mensch so nicht direkt sehen oder finden könnte – etwa ob in der aktuellen Bauteilschicht ein Fehler vorliegt, wo er sich befindet und welche Auswirkungen er auf den weiteren Druckverlauf hat. „Ziel ist es, mit diesen Mustern automatisch menschliche Entscheidungen herbeizuführen.“

„Dieses Verfahren ermöglicht es, den Fertigungsprozess stabiler zu machen“, sagt Westphal. Denn bislang konnten die Fehler gar nicht oder wenn, dann erst nach dem Druckprozess erkannt werden. „Nun kann man während des laufenden Druckprozesses entscheiden, die Druckeinstellungen zu optimieren oder den Druck bei zu gravierenden Fehlern abzubrechen.“ Somit kann Zeit und Geld eingespart werden – eine für Wirtschaft und Industrie verlockende Aussicht. Zudem erhält man nebenbei durch die bildliche Datenerfassung auch ein detailliertes Monitoring des gesamten 3-D-Druckprozesses.

Der 3-D-Druck wird beispielsweise in der Luft- und Raumfahrt oder der Medizintechnik angewendet und ermöglicht insbesondere neue Design-Freiheiten sowie Individualisierungsmöglichkeiten. „Im Maschinenbau ist er sehr stark im Kommen“, sagt Westphal. Auch in der Pharmakologie oder gar im Lebensmittelbereich findet die neue Technologie ihre Anwendung. Dies macht deutlich, dass hier ein Multi-Milliarden-Markt heranwächst. Die Frage der Qualitätskontrolle ist deshalb von erheblicher Bedeutung.

Schlagworte

3-D-DruckAdditive FertigungDesignFertigungMaschinenbau

Verwandte Artikel

25.04.2024

RPTU schafft Grundlagen, um Maschinen künftig mittels 6G-Mobilfunk kabellos zu steuern

Die Forscher nutzen für ihr Konzept kabellose Networks-in-Networks. Die Idee dahinter ist, dass an die übergreifende 6G-Gesamtarchitektur spezialisierte Architekturen and...

Digitalisierung Fertigung Forschung Kommunikation Lieferkette Messe Organisation Planung Produktion
Mehr erfahren
24.04.2024

Fraunhofer IESE präsentiert neue Industrie-4.0-Lösung für niedrigschwelligen Zugang zu Datenräumen

Das IESE aus Kaiserslautern stellt eine innovative Lösung vor, die Unternehmen unterschiedlichster Größe den Beitritt zu Datenräumen erleichtert und ihnen so den Einstieg...

Datenmanagement Digitalisierung Fertigung Industrie 4.0 Lieferkette Messe Nachhaltigkeit Software
Mehr erfahren
ABP-Induktionsofenschmelzanlage in Betrieb.
GIESSEREI
24.04.2024

Wie der Induktionsofen zum Energiespeicher wird

Die metallverarbeitende Industrie ist weltweit einer der größten industriellen Verursacher von CO2-Emissionen. Eine alternative Lösung zur CO2-Reduzierung ist die Indukti...

Design Digitalisierung Eisen Fertigung GIFA Guss Gussteile Messe Metallverarbeitung Planung Produktion Simulation
Mehr erfahren
If metal shavings are pressed into briquettes, the volume of aluminium, for example, is reduced volume of aluminium is reduced to a tenth.
GIESSEREI
23.04.2024

Vergleich Brikettieren vs. Zentrifugieren

Vor einer Investition in eine Spänebehandlung ist gründlich zu prüfen, welche Potenziale diese bietet.

Aluminium Automatisierung Eisen Guss Kupfer Logistik Maschinenbau Produktion Stahl Werkstoffe
Mehr erfahren
Wolfgang Maaß (l.) und seine wissenschaftlichen Mitarbeiter Hannah Stein und Ankit Agrawal (r.) forschen mit Partnern aus Wissenschaft und Wirtschaft daran, die Leistungskraft der Quanten für die metallverarbeitende Industrie nutzbar zu machen.
22.04.2024

Quantenpower für die Wirtschaft – Schnelle Simulationen für die Industrie 4.0

Metallbauteile perfekt in Form ohne Ausschuss und Fehlproduktion: Die Rechenkraft der Quanten soll schon in greifbarer Zukunft die Fertigung der metallverarbeitenden Indu...

Digitalisierung Eisen Fertigung Forschung Industrie 4.0 Materialwissenschaft Messe Planung Produktion Sicherheit Simulation Software Turbine
Mehr erfahren